UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

美联社:“瑞典诺贝尔奖评审委员会刚刚公布,中国学者庞学林和柯顿沃克共同获得本年度诺贝尔化学奖。”

泰晤士报:“史上最年轻诺贝尔科学奖诞生,庞学林刷新由英国已故物理学家劳伦斯布拉格保持年龄记录。”

法新社:“锂空气电池项目获得本年度诺贝尔化学奖,中国天才少年成为史上最年轻的诺贝尔科学奖项获得者。”

产经新闻:“巨龙之子再创奇迹,诺贝尔化学奖最终花落中国。”

朝鲜日报:“庞学林引领中国科技进步,遗憾庞不是韩国人……”

“……”

相比于国外媒体酸溜溜的语气,中国媒体那就是不要钱地吹了。

腾讯新闻:“国士无双,庞学林院士斩获中国第二座诺贝尔科学奖奖杯,中国学术界迎来庞学林时代。”

今日头条:“震惊!我与庞学林教授不得不说的故事,原来日常生活中的庞教授竟然是这样的……”

新浪新闻:“二十四岁的诺奖得主,庞学林院士将为我国科技创新注入全新动力。”

观察者:“除了顶礼膜拜,我们还能说什么呢?中国一日之内斩获两座诺贝尔化学奖,从某种意义上说,庞学林已经成为了我们这个时代的标志性人物!”

凤凰网:“全球华人的骄傲,庞学林教授必将载入史册!”

“……”

庞学林可没有多少时间看网上的讨论和新闻。

回复完那些祝贺的电话后,他还得继续此次香山科学会议。

计划基本上得到与会众人认可的情况下,下午的时候,与会的这些科学家将就庞学林所列出方案的技术路线开始展开讨论。

这种讨论比起上午的那种针尖对麦芒就要来的轻松多了。

不过大部分情况下,都是庞学林在解释,与会的这些专家们在听。

毕竟对于这样一个史无前例的超级工程,除了庞学林,谁都没有经验。

因此,庞学林只能将整个计划书分解开来,每一个项目都一一向众人解释一遍。

下午的会议一直持续到五点才结束,庞学林原以为终于可以休息的时候,结果左亦秋跑过来告诉庞学林,说央视的记者来了,希望对庞学林做一次专访。

庞学林只好跟着左亦秋来到房间的会客室,看到了已经在会客室内等候多时的老熟人董青。

“董记者,原来是你啊,好久不见好久不见。”

“庞院士,没想到时隔一年,我们再次相见,你已经是传说中的诺奖大佬了。”

“哈哈,董记者说笑了。”

“……”

去年董青采访庞学林的时候,两人就已经比较熟悉了,因此这一次,两人聊得很轻松。

“庞院士,这次采访比较正式,除了晚上的neb的科研资金直接打到了钱塘实验室内。

好不容易等这些工作全部忙完,庞学林才专门抽出两天时间,陪姚冰夏在京城周边好好玩了一圈,这才搭乘专机返回江城。

回到江城的第一时间,庞学林直接找来飞刃材料项目组全体成员,就飞刃材料的升级改造方案重新过了一遍,然后要求项目组与新凯材料有限公司对接,尽快实现飞刃材料量产。

直到这时,庞学林才开始有时间将注意力放在常温超导的研究上。

事实上,在庞学林从黑暗森林世界获得的奖励中,并不存在常温超导的相关技术。

当初在黑暗森林世界,维德他们之所以搞出了那条长达二十多公里的超级电磁弹射轨道,完全是不计成本堆资源堆出来的。

单单用于维持超导效应的铌钛合金以及液氦,就耗费了数万亿美金。

在现实世界,庞学林根本不可能这么做。

因此,他必须另辟蹊径,寻找到具备普遍意义的超导体物理学机制。

所谓超导体,指的是在某一温度下,电阻为零的导体。

超导体的发现与低温研究密不可分。在18世纪,由于低温技术的限制,人们认为存在不能被液化的“永久气体”,如氢气、氦气等。

1898年,英国物理学家杜瓦制得液氢。

1908年,荷兰莱顿大学莱顿低温实验室的卡末林昂内斯教授成功将最后一种“永久气体”氦气液化,并通过降低液氦蒸汽压的方法,获得1.154.25k的低温。

低温研究的突破,为超导体的发现奠定了基础。

在十九世纪末二十世纪初的物理学界,对金属的电阻在绝对零度附近的变化情况,有不同的说法。

一种观点认为纯金属的电阻应随温度的降低而降低,并在绝对零度时消失。

另一种观点,以威廉汤姆逊开尔文男爵为代表,认为随着温度的降低,金属的电阻在达到一极小值后,会由于电子凝聚到金属原子上而变为无限大。

1911年2月,掌握了液氦和低温技术的卡末林昂尼斯发现,在4.3k以下,铂的电阻保持为一常数,而不是通过一极小值后再增大。因此卡末林昂尼斯认为纯铂的电阻应在液氦温度下消失。

为了验证这种猜想,卡末林昂尼斯选择了更容易提纯的汞作为实验对象。

首先,卡末林昂尼斯将汞冷却到零下40c,使汞凝固成线状;然后利用液氦将温度降低至4.2k附近,并在汞线两端施加电压;当温度稍低于4.2k时,汞的电阻突然消失,表现出超导状态。

后来,经过众多科学家的研究,发现超导体具有三个基本特性:完全电导性、完全抗磁性、通量量子化。

所谓完全导电性,又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。

完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。

交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起;在微观上,交流损耗由量子化磁通线粘滞运动引起。

交流损耗是表征超导材料性能的一个重要参数,如果交流损耗能够降低,则可以降低超导装置的制冷费用,提高运行的稳定性。

第二,完全抗磁性,又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。

完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。

超导体电阻为零的特性为人们所熟知,但超导体并不等同于理想导体。

从电磁理论出发,可以推导出如下结论:若先将理想导体冷却至低温,再置于磁场中,理想导体内部磁场为零;但若先将理想导体置于磁场中,再冷却至低温,理想导体内部磁场不为零。

对于超导体而言,降低温度达到超导态、施加磁场这两种操作,无论其顺序如何,超导体超导体内部磁场始终为零,这是完全抗磁性的核心,也是超导体区别于理想导体的关键。

第三,通量量子化效应,又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体绝缘体超导体结构可以产生超导电流。

约瑟夫森效应分为直流约瑟夫森效应和交流约瑟夫森效应。

直流约瑟夫森效应指电子对可以通过绝缘层形成超导电流。

交流约瑟夫森效应指当外加直流电压达到一定程度时,除存在直流超导电流外,还存在交流电流,将超导体放在磁场中,磁场透入绝缘层,超导结的最大超导电流随外磁场大小作有规律的变化。

UU阅书推荐阅读:在日本当老师的日子末日重来没想到剧情也变了末世,我靠双系统封神魔方世界:末世困兽诸天大道图全球末世:开局觉醒吞魂天赋保持缄默从梦见末世到打造幸存者基地文字游戏入侵现实终极吞噬进化末世大咖全球提升计划钢铁少女的生存法则末日我在尸群当中睡大觉星空下的残响末日苟到尸帝冰河末世:我有一座超级农场末世天灾:先从暴雨开始开局就送狗熊岭?末世,不带怕的末世系统:心灵终结当丧尸开上机甲变成丧尸了,空间有何用?造星无敌从火影开始末世开局:傻了,我是超级大反派星海骑士:无名小卒开局我成了反派?星际未来之梦末世降临,开局获得千本樱提瓦特的崩坏3系统神级快穿:病娇宿主,求轻宠穿书末世圣母,我带着丧尸杀疯了废土黎明之最终战役末日重生:有仇不隔夜,当场报末世囤货,手握千万资金开局丧尸专列进击吧,末日铁甲我真的不想有末世啊末日暴雨,我得到了移动避难所星河战队:崛起群星:我没输过,你说我是战犯?末世重生,我到漂亮国零元购基因边缘修仙到星际:将军夫君请多指教肆纪末世迷雾:我直接看穿所有末世开局,拥有泰坦的我无敌了从火影抽卡开始横推末世末世细胞学随波逐流的宝可梦
UU阅书搜藏榜:微型世界:开局灭了一国糟了!1999年的事情瞒不住了快穿之拯救小娇妻穿越原神后魈自愿和我回家我又又恋爱了末日重生:我选择拯救世界全球求生:开局一座避难所全球降临之雪国求生天瞳术美漫也有妖气我编的百科词条成真了源力大时代最终之自我救赎末世:想要变强?唯有囤积女神!当学霸开了科技移动城佣兵协议诸天:开局一座明朝时空门万界第一纨绔星痕末世重生后要种田修仙登顶银河人生赢家金古武侠赋废土世界:从拾荒机器人开始单独降临:七十亿副本求生九叔之我竟然是秋生修神之至尊之道快穿:宿主她危险又撩人末世丧尸女王:男神,来撩!咒术法师逆转快穿:男主求攻略韩娱之大梦想末日求生:苟住别浪狗腿子切开是黑的捡个星际元帅当老公穿越诸天西幻网游之贼倾天下哇酷阿玛的搞笑小故事独独不说喜欢你某超赛亚人的世界之旅启灾厄末世重生:我成为了末世最强领主热血格斗家诡眼迷踪平凡末世路灵魂快穿:病娇男主你有毒我的命运改变器末世究极基地男主怎么老崩坏
UU阅书最新小说:海平面升高七十米,我赚麻了末日游戏全球降临明日之始穿成吐宝鼠后,被上将娇养了末世狂人打工记末世游戏降临,我却开了透视基因高武时代开局双异能,我在诡异世界成神纪年前记末世:从异虫开始,天灾末日穿越星际兽世,小雌性她可盐可甜丧尸潮里美少女枪战与种田破碎的时空异世探索三天穿越一次,末世宝藏随便拿无敌之我在末世捡垃圾末世:我的公寓很安全重生之天灾末世前森居物语破晓孤星末日领主:我的玩家有亿点点强末世小民苟活末世靠美女不断变强末世天灾,囤满物资就摆烂末世:我猎杀丧尸,你们怕什么?星际奇遇记夜幕汹涌末日战争降临三星纪:古蜀文明的宇宙征途愚公重生:断代星球全民领主,开局地球炸了最后的御者末世!开局自选武器从黑道到军阀进击的人类,反攻异族母星末世修罗血统怦然兴动末世重生:龙兴纪元末世抽取轮盘计划内的末世奴隶阿飞:励志人生克系恐惧末世舰娘宴者彼岸:我必于你们之前到达末世,我有枪有碉堡,惹我都得死烈日森林众生若尘微尘:时空之旅末世双杰MATE·智能对峙智芒破晓演变战役