UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

无线输电是一百多年前的先驱者就开始玩的“老技术”了,其特性在于点对面不固定的传输性质,可以避免有线电中所存在的许多问题。

现今世界技术成熟的无线输电方式主要是「电磁感应式」与「谐振式」两种。

第一种电磁感应式,与电力系统中常用的变压器原理类似,目前使用电磁感应传递电能的产品有诸如电动牙刷、手机、相机等小型化便携式电产品,由充电底座对其进行无线充电。

智能手机无线充电噱头其实就是这个,工作原理就是电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。

第二种谐振式无线输电,与无线通讯原理类似,其发送端谐振回路的电磁波全方位开放式弥漫整个空间,接收端回路谐振在特定的频率上,从而实现能量的传递。

但其存在电磁辐射,传输功率越大,距离越远,效率越低,辐射也越严重。

而李林飞果断的摒弃了当前研究前沿的这两种技术手段,甚至都没有在此基础上改进,因为作用不大。

他选择的是一种全新的无线输电技术太赫兹耦合共振原理。核心技术点就是太赫兹!

据说尼古拉特斯拉的记忆超群,可以记下整本书并且能够随意背诵,能够在大脑中设想出整个设备的样子,然后在不写下任何东西的情况下,构造出这个设备。

如今的李林飞同样具备这样的能力,而且他比特斯拉拥有更强大的全息辅助系统,这无疑能够极大的提高技术开发效率,缩短一项开发时长周期。

想要开发出基于太赫兹耦合共振技术的无线输电设备,需要搞定的技术点也很多,不夸张的说,搞定这套无线输电设备,能让李林飞从中获得好几个诺贝尔奖。

实际上在锡烯材料的应用技术突破,这里就蕴含着诺贝尔奖级别的技术突破,而且科学界对李林飞得奖的呼声越来越高,但诺贝尔奖评选机构依旧比较审慎,很多科学技术的突破,可能要经过十几年甚至更久才被认定评奖,诺贝尔奖在自然科学这一领域还是很有权威性的。

至于经济学奖、和平奖之类的看看就好。

再一个让诺贝尔奖机构有点无奈的是,从各方面连看,李林飞对诺贝尔奖的兴趣缺缺。

……

太赫兹耦合共振技术,在这当中有太多的技术空白了。

首先一个就是太赫兹thz,在电磁波谱中有一段尚未被人类有效认识和利用的真空地带,其频率范围为100ghz10thz,位于微波和红外辐射之间,即所谓的“太赫兹空隙”。

太赫兹在早期不同的领域有不同的名称,在光学领域被成为红外,在电子学领域,又称为亚毫米波、超微波等。

李林飞想要搞太赫兹耦合共振技术,首先得搞定太赫兹这个技术点。

目前还没有哪个机构或材料公司能够制作高功率便携式连续可调的并且成本较低的thz发射源,以及满足现实要求的滤光片,另外也没有能够在常温下直接探测太赫兹射线的被动式探测器。

李林飞要用太赫兹,这些他必须得搞出来。

而无线输电必须用太赫兹电磁波,其它波频辐射对人体是或多或少有害的,但太赫兹释放的能量很小,不会在人体内产生有害的光致电离。

所以,相比较x射线,太赫兹射线才能真正意义上进入人们的生活当中。

不然谁敢用?对人体有巨大辐射伤害的产品连上市的可能性都没有。

电磁波的强度随着距离的衰减是呈指数衰减的,频率越高,伤害越大,频率低,电磁波的能量小,穿透人体的时候吸收的能量如果不足以使得分子或原子的电子电离,几乎不会有伤害。

但像x射线,就有电离作用,长期照射就会损害细胞电性,使细胞找到破坏、病变、致癌。因为水对电磁波的吸收很大。

而人体有70的水分,但空气中的电磁辐射量很小,有些波段的电磁波,如非常热的太赫兹电磁波,与人体内的有机物和大分子的只有震动相近,辐射量小,几乎无害,毫无疑问是无线输电的绝佳选择。

太赫兹耦合共振这种全新的无线输电方法,即电磁能的隧穿效应。

在太赫兹波段,一个号角波导产生一个衰减电磁波,倘若接收波导支持相应效率的电磁波模式,即衰减场传播模式,能量从一个媒体以隧穿方式传输到另一个媒体。

换句话说,衰减波耦合是隧穿效应在电磁场中的具体体现。

本质上,这个过程与量子隧穿效应相同,只不过是电磁波替代了量子力学中的波函数。

这就是太赫兹共振感应耦合,区别于普通的电磁感应耦合,它使用单层线圈,两端放置一个平板电容器组成共振回路以减少能量的浪费。

李林飞把所需要的器材清单都发给了采购部,然后让他们把买到的材料都运到了研究所。

一个星期的时间转瞬即过,采购部把李林飞所需要的材料和实验设备全部准备妥帖,都已移交研究所的太赫兹耦合共振技术研究团队。

太赫兹耦合共振技术是一整套复杂的技术体系,每一个研究小组只是拿到了其中局部的制造任务,对于其它模块一无所知。

技术保密问题李林飞自然不会忽视,另一方面也有一个团队正在着手部分的专利注册的问题,要商业化是绕不开这个环节,不构建专利壁垒会损失惨重。

真正的核心科技连仿制都做不到的,那当然不用去搞专利了。

(未完待续)

UU阅书推荐阅读:度韶华李牝安婉怡免费阅读完整版万界比武场萌妻大神:溥少,强势宠明镜暗不治法师乔安秦时明月之唯我独尊变种人的日常生活[综英美]宁以初厉凌炀的小说全文免费阅读无弹窗灾厄之冠掌上娇娇薛清茵贺钧廷魔兽领主疯狂的多塔魔王不必被打倒人在秦时,靠刷取词条改变世界他背叛我以后又后悔了领主争霸:开局一个传国玉玺!虚空拼图穿越到明日方舟后的日常生活农家媳的秀色田园医路青云类似小说总裁疼入骨:强势撩妹108次红楼梦:第二梦求生游戏:物资太多只能假冒欧皇我叫科莱尼种田养崽:恶毒女配被全家争着宠活人禁忌2柏林之光魔道同人之忘羡神仙眷侣球场狂徒【原神】各类cp同人斩神:因为喜欢,所以要斩神喽!末世狩猎人球场雄心精灵之生草训练家我以奥术登临神座穿越海岛求生,误惹红发疯批大佬星际法师行NBA暴力中锋直播游戏唯一指定玩家网游之近战弓箭手天界战神塔防游戏:从神级天赋开始发育流放之主木筏求生:唯有我万倍返还柯南:开局与贝姐合作扬名立万萌妻诱人:高冷老公,别太猛数码宝贝:大家的故事特利迦奥特曼同人作品三世沉沦之倾世半妖
UU阅书搜藏榜:我自在运镖天下兵道争锋异界全能领主霍格沃兹之杯底诸天大神是萝莉关东冠军的精灵直播间你的情深我不配类似小说足球大咖前世不知老婆好,重生纠缠要抱抱李牝安婉怡小说全文免费阅读无弹窗[综漫]炮灰联萌网游之不败领主开局就是百冠王冰雪与狐萝卜万界观影?不!是圆梦大师!灾难世界之我有红警正派都不喜欢我随风漫步最新小说我在星际养娃捡垃圾无双宝鉴带刀控卫木叶的不知火玄间网游之超极品战士我就是开外挂了奥能之辉这个异世界连哥布林都很危险!蜀山之魔仙网游:我能强化出神级亡灵刚刚开学世界就末日了都市超品神医网游之异世最强神豪冠军星河重生系统撩主神三国网游:获得唯一帝王级建村令重生了,我成了死亡骑士我在逃荒路上开宝箱篮坛巨石从睡觉开始杀穿诸天诸天从三国开始离谱!他怎么见谁都是一刀秒?星铁:创世女神见闻录联盟之谁还不是个天才少年我叫术士策划异世界绝品狂仙惊悚游戏之我才是脏东西NBA开局队史第一人LVSS西弗很忙[综英美]心理控制瓦:红温型选手,队友越红我越强
UU阅书最新小说:姐姐,我来教你爱我老宅藏智沈家三姝的商征途LOL之破防李哥,我辈义不容辞被迫脑补百分百如懿传之所有人双商都上线六爻八卦一点通重生古代被娶娇妻风神大人的真香日记纬度间隙:不许开除我的人籍霸道女总和她的小绵羊我,暗影君王,影子全是大将级!红楼之贾环科举路无职:没天赋剑士又怎样求生难?我一天一个黄金宝箱斩神:从恶魔代理人开始万能系统:开局就是作弊器重生1990:江城造物主神级演技,从出演耽美片开始这个落选秀打脸整个NBA双人求生:开局被死对头强吻了!公司炸了后,我去小世界捡老婆游戏入侵:我加载了NPC奸商模网恋后,被禁欲影帝亲到腿软攀高枝另娶,我嫁将军你悔什么杭城豪门沈知意的璀璨霸道总裁爱上我:命中注定爱上你从零开始的的数码世界魂穿申公豹后藕丙CP我磕生磕死电竞:和死对头同队后,我真香了漫游五界这个异世界连哥布林都很危险!这么大的球门,你们踢不进吗?枭爷的娇气小少爷玩家编号404糙汉军官恋爱脑,娇宠小娇媳素世:得想个法子和姐妹抢男人!仙魔第一万人迷和大佬分手后,我被迫攻略他在生存游戏被氪金大佬盯上了杜克流:从希腊开始人生:虞荼错梦黑暗求生:从茅草屋抵御寒流开始次元之主:万界融合狂潮穿越忍3,拥有熟练度的我无敌了开局被拐,奥特黑帮破门我的世界:全学院最能打的僵尸烬夜织天局小天狼星陪哈利长大人人都能读懂伤寒论