UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

随后,江寒操作着电脑,心无旁骛,很快就进入了状态。

夏雨菲也不再来打扰他,拿着手机,半躺在床上,自己上网、听歌。

江寒将高老师发送来的part012.rar和part013.rar下载下来,连同夏雨菲下载的前11个文件,放在了同一个文件夹中。

然后在第1个文件上点击鼠标右键,选择用WinRAR解压缩,很快就得到了数据包。

一共两个文件,train-images-idx3-ubyte与train-labels-idx1-ubyte。

idx3-ubyte和idx1-ubyte都是自定义的文件格式,官网上就有格式说明。

train-images文件大小超过1g,保存了20万张手写数字的图片信息。

而train-labels中则存储了20万个标签数据,与train-images一一对应。

和公开版本的MNIST不同,用于比赛的这个手写数字数据集,数据量要大出好几倍。

Kaggle官方将数据集分为两部分,训练集train向参赛选手公开,而测试集test则内部保存。

比赛的形式很简单,大家根据公开的训练集,编写自己的程序,提交给主办方。

主办方用不公开的测试集数据,对这些程序逐一进行测试,然后比较它们在测试集上的表现。

主要指标是识别率,次要指标是识别速度等。

这是“人工神经网络”在这类竞技场上的初次亮相,江寒可不想铩羽而归。

事实上,如果想追求更好的成绩,最好的办法,就是弄出卷积神经网络(CNN)来。

那玩意是图像识别算法的大杀器。

在“机器学习”这个江湖中,CNN的威力和地位,就相当于武侠世界中的倚天剑、屠龙刀。

CNN一出,谁与争锋!

只可惜,这个东西江寒现在还没研究出来。

现上轿现扎耳朵眼,也来不及了。

再说,饭要一口口吃,搞研究也得一步步来。

跨度不能太大喽,免得扯到蛋……

所以在这次比赛中,江寒最多只能祭出“带隐藏层的全连接神经网络”(FCN)。

有了这个限制,就好比戴着镣铐跳舞,给比赛平添了不少难度和变数。

那些发展了几十年的优秀算法,也不见得会输普通的FCN多少。

所以,现在妄言冠军十拿九稳,还有点为时过早。

不过,有挑战才更有趣味性嘛,稳赢的战斗打起来有什么意思呢?

江寒根据官网上找到的数据格式说明文档,编写了一个文件解析函数,用来从两个train文件中提取数据。

train-images-idx3-ubyte的格式挺简单的,从文件头部连续读取4个32位整形数据,就能得到4个参数。

用来标识文件类型的魔数m、图片数量n、每张图片的高度h和宽度w。

从偏移0016开始,保存的都是图片的像素数据。

颜色深度是8位,取值范围0~255,代表着256级灰度信息,每个像素用一个字节来保存。

然后,从文件头中可以得知,每张图片的分辨率都是28×28。

这样每张图片就需要784个字节来存储。

很容易就能计算出每张图片的起始地址,从而实现随机读取。

如果连续读取,那就更简单了,只需要每次读取784个字节,一共读取n次,就能恰好读取完整个文件。

需要注意的是,图像数据的像素值,在文件中存储类型为unsignedchar型,对应的format格式为B。

所以在Python程序中,在image_size(取值为784)这个参数的后面,还要加上B参数,这样才能读取一整张图片的全部像素。

如果忘了加B,则只能读取一个像素……

train-labels-idx1-ubyte格式更加简单。

前8个字节是两个32位整形,分别保存了魔数和图片数量,从偏移0009开始,就是unsignedbyte类型的标签数据了。

每个字节保存一张图片的标签,取值范围0~9。

江寒很快就将标签数据也解析了出来。

接下来,用Matplot的绘图功能,将读取出来的手写数字图片,绘制到屏幕上。

然后再将对应的标签数据,也打印到输出窗口,两者一比较,就能很轻松地检验解析函数是否有问题。

将解析函数调试通过后,就可以继续往下进行了。

首先要将图片的像素信息压缩一下,二值化或者归一化,以提高运算速度,节省存贮空间。

像素原本的取值范围是0~255。

二值化就是将大于阈值(通常设为中间值127)的数值看做1,否则看做0,这样图片数据就转换成了由0或者1组成的阵列。

归一化也比较简单,只需要将每个像素的取值除以最大值255,那么每个像素的取值空间,就变成了介于0和1之间的浮点数。

两种手段各有利弊,江寒决定每种都试一下,看看在实践中,哪个表现更好一些。

由于江寒使用的是全连接网络,而不是卷积神经网络,所以还要将2维的图片,转换成1维的向量。

这个步骤非常简单,将二维的图片像素信息,一行接一行按顺序存入一维数组就行。

事实上,在解析数据文件的时候,已经顺便完成了这一步,所以并不需要额外的操作。

20万张图片,就是20万行数据。

将这些数据按顺序放入一个×784的二维数组里,就得到了Feature。

Lable的处理比较简单,定义一个具有20万个元素的一维整形数组,按顺序读入即可。

江寒根据这次的任务需求,将20万条训练数据划分成了2类。

随机挑选了18万个数据,作为训练集,剩余2万个数据,则作为验证集validate。

这样一来,就可以先用训练集训练神经网络,学习算法,然后再用未学习过的验证集进行测试。

根据FCN网络在陌生数据上的表现,就能大体推断出提交给主办方后,在真正的测试集上的表现。

写完数据文件解析函数,接下来,就可以构建“带隐藏层的全连接人工神经网络”FCN了。

类似的程序,江寒当初为了写论文,编写过许多次。

可这一次有所不同。

这是真正的实战,必须将理论上的性能优势,转化为实实在在、有说服力的成绩。

因此必须认真一些。

打造一个神经网络,首先需要确定模型的拓扑结构。

输入层有多少个神经元?

输出层有多少个神经元?

设置多少个隐藏层?

每个隐藏层容纳多少个神经元?

这都是在初始设计阶段,就要确定的问题。

放在MNIST数据集上,输入层毫无疑问,应该与每张图片的大小相同。

也就是说,一共有784个输入神经元,每个神经元负责读取一个像素的取值。

输出层的神经元个数,一般应该与输出结果的分类数相同。

数字手写识别,是一个10分类任务,共有10种不同的输出,因此,输出层就应该拥有10个神经元。

当输出层的某个神经元被激活时,就代表图片被识别为其所代表的数字。

这里一般用softmax函数实现多分类。

先把来自上一层的输入,映射为0~1之间的实数,进行归一化处理,保证多分类的概率之和刚好为1。

然后用softmax分别计算10个数字的概率,选择其中最大的一个,激活对应的神经元,完成整个网络的输出。

至于隐藏层的数量,以及其中包含的神经元数目,并没有什么一定的规范,完全可以随意设置。

隐藏层越多,模型的学习能力和表现力就越强,但也更加容易产生过拟合。

所以需要权衡利弊,选取一个最优的方案。

起步阶段,暂时先设定一个隐藏层,其中包含100个神经元,然后在实践中,根据反馈效果慢慢调整……

确定了网络的拓扑结构后,接下来就可以编写代码并调试了。

调试通过,就加载数据集,进行训练,最后用训练好的网络,进行预测。

就是这么一个过程。

江寒先写了一个标准的FCN模板,让其能利用训练数据集,进行基本的训练。

理论上来说,可以将18万条数据,整体放进网络中进行训练。

但这种做法有很多缺点。

一来消耗内存太多,二来运算压力很大,训练起来速度极慢。

要想避免这些问题,就要采取一定的策略。

UU阅书推荐阅读:全球觉醒:偷听SSS级校花心声手术直播间非黑即白?不,我是商业巨擘!大妆大清佳人军痞王爷,超猛的!结婚抓奸笑我傻,跪求原谅你是谁花都奇兵师妹老想撩我怎么办游戏缔造者隐姓埋名二十年,崛起先杀白月光贵妻谋后我只是个病人,别叫我天灾捡回家的班花太黏人,我遭老罪了重生80,断绝关系后我垄断了南方市场空间医妃:暴君蛇王极致宠极速治愈:双修镇压道基因武道全能少女UP主我表白的人全让病娇妹妹送走了替身又如何,玄学大佬拿捏女财阀人在家中坐,萝莉天上来快穿女配逆袭:男神请上钩重生后,我只想混娱乐圈工业大摸底:摸出来个南天门计划妻子背叛:摇身一变成太子做媒这一块,我谁都不服做卡牌,我可是你祖宗!暧昧神医桃运修真者重启平行人生灵气复苏:从文明书院开始漫漫修真路,一人独登仙陌上花开为君归轮回剑典盛世良后道士不想下山思归何归大唐盛世游龙前男友爆红后我被迫官宣了深山林场:重返83打猎发家妖女满堂?明明是仙子忠诚!破事精英之怕麻烦的副经理炮灰女配的逆袭人生在民族资产的路上以她饲虎重生之学霸无双前妻离婚无效头顶青青草原,老实人的憋屈重生被逐出豪门?假千金反手闪婚首富
UU阅书搜藏榜:小楼大厦大国中医潇洒离婚后,她藏起孕肚成首富!予你熠熠星光小祖宗她是顶流大佬的心尖宠平淡的水乡生活绑定慈母系统后,我摆烂了凰妃逆天下玄学大佬被乖兮兮的奶狗缠疯了林域守从长征开始:十军团的绝境血路接单相亲,美女总裁赖上我直播打假,开局800页保险护体我和我姐一起穿越了魔族少年闯人间四合院:从逃荒开始逆天十八线艺人搞副业,天天跑警局穿书:我被疯批反派夜夜盯到腿软小市场住手!这不是游戏世界!才女清照权斗觉醒时代:我的队友全是觉醒女神神豪花钱系统!医品嫡妃:娇宠偏执摄政王重生之寒门吝啬媳八零后少林方丈史上最强斩妖师道吟重生黑客女王:冷少追妻忙第99次心动娘亲有点拽我家有只九尾狐腹黑竹马:小青梅,吃不够!被团宠成顶流后,她掉马了最强老公:独宠软萌小甜妻圣灵魔法师绝品医妃:误惹腹黑王爷顶流宠妃倾天下总裁老公惹不得我是修士,你们怎么跟我玩修真到异世求求你出道吧穿越后我靠混吃等死苟成了终极大佬慢穿之璀璨人生蚀骨婚情:前夫,请止步人在终极,开局时空之子美人犹记总裁三观不太正五行天
UU阅书最新小说:下山后,我为真仙灵气复苏,开局制作铠甲变身器千年镜灵求我修道我去修仙咯抬手压制外神,你跟我说这是全知无限贷款疯狂攻略:只为治好姐姐天呢,我的电子女友竟然来自末世?高武:乡村教师?我能看穿你祖宗十八代国运:从拿瓦开始做主角的白月光重生60:族谱把我除名,我猎物满屋你又急重生:老婆离婚跟知青,我成大佬她悔了知青媳妇有空间,吃软饭很合理吧重生78:一杆猎枪承包整片大山炊事老兵:奋斗在九零年代掌控全球语言,从做神棍开始直播挑战,生存系统正在加载中重生之万亿帝国拳王赞歌穿越:你们都是人,凭什么我是球重生津港:只要毒舌就能暴富没有异能的我却能靠卡片变身变身后我赎罪与恋爱的路我真的没想过要重生啊三和大神修仙记你悔婚我换新娘,喜帖送上你悔断肠都重生了当然要当大佬啊!疯了吧!开局摆摊卖黑丝?黑色档案,官场沉浮二十年和四名前女友合租,我被围了西部商途重生85:我每天一个最新情报秩序病:疯癫与文明花都校草:全能高手的传奇民国的先生潜流时代我捡到了落宝金钱穿越美利坚2015我是军火商诈骗犯全球通缉我都开挂了,你还叫我杂牌军?40下岗外卖员到异国首相我靠分身觉醒无数异能跌入深渊时,前妻抓住了我的领带老婆跑后,带娃逆袭崛起高武世界!我的航海灵气复苏,最强觉醒从炼炁开始玄真之下阎罗出山,我所向无敌荒岛求生:我抢了别人的多子多福终极:医仙传人