UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

一小时后,方鸿再次来到了量化资本总部。

陈宇的助理前来接待他,领着他向着招待室走去,并说道:“方先生,陈总正在技术部开会,您稍等,我去知会他一声。”

方鸿如是说道:“不用,直接带我去他的会议室,我去旁听一下。”

闻言,陈宇的助理拿出手机给他发了个信息,很快陈宇就回消息,这位助理转而看向方鸿微笑道:“方先生,您这边请。”

不一会儿,方鸿便来到了陈宇所在的会议室,在场有三十多号人,看到走进来一个陌生的青年,大家都颇为好奇的打量了一下。

他们发现方鸿跟自己老板陈宇的年龄差不多,但不同的是,他们从方鸿身上感受到了一种在这个年龄阶段所没有的上位者气场,这让大家意识到这个陌生青年不是一般人。

此刻,陈宇看到方鸿与之相视点头致意,后者微微一笑便在会议室里默默地找了个位置坐下旁听。

陈宇收回目光,转而环视一众与会者继续说道:“……对于人工智能的基本实现思路,机器学习的过程,简单的说就是电脑到底是如何自我学习的。”

“因为计算机的一切运算,其基础都是数学运算,所以任何机器学习的思路,归根结底就是把一个实际问题转化为数学问题。为了让计算机能够预测或者识别什么东西,就需要先构造一个数学函数,这个数学函数就叫预测函数。”

一般人可能很难想象,量化资本作为一家多元金融公司,在大多数股民眼里甚至就是一家非银金融投资公司,掌门人也是做投资交易的,却在公司里谈论这些内容。

不过方鸿是很淡定,这其实很正常,华尔街就是汇集了一群顶尖的数学家、物理学家。

此刻,陈宇转而看向会议屏幕道:“比如预测一个吃饱饭的函数,就可以描述成[吃饱=n碗饭],这个预测计算到底准不准?一个人吃几碗饭和吃饱之间的关系有是什么?是吃一碗还是三碗才能吃的饱?”

“这就需要实际去试一下,如果预测是两碗饭吃饱,但实际要吃三碗饭才饱,其中一碗的误差就是损失,描述这个损失的函数即[3-n=1],这就是损失函数。”

“机器学习就是通过不断尝试让这个误差达到最小的过程,寻找损失最小值的方法通常是梯度下降,一旦我们找到了最小误差,就会发现当[n=3]的时候误差最小,也就是机器学习找到了真实的规律,就成功解决问题了。”

陈宇再度看向众人道:“所以,机器学习就是在寻找数据的规律,大部分时候,它的本质就是把数据投射到坐标系里,然后用计算机通过数学方法画一条线区分或者模拟这些数据的过程。”

“不同的机器学习方法,就是在使用不同的数学模型来投射数据和画线,从上世纪到现在,不同的流派找到了不同的方法,擅长于解决不同的问题,影响比较巨大的有这么几种:线性回归和逻辑回归、k近邻、决策树、支持向量机、贝叶斯分类以及感知机等。”

方鸿坐在一边旁听默默不言,他也算是计算机科学领域的半个业内人士,更有前世记忆先知先觉的优势,此刻旁听也是毫无压力。

陈宇他们走的显然就是神经网络这个流派,不过也向前推进了一步,进入到了强化深度学习,而神经网络的前身就是感知机。

这三个名词本质上都是在玩同一个东西。

却说此刻,陈宇缓缓地说道:“深度学习最基本的思想就是模拟大脑神经元的活动方式来构造预测函数和损失函数,既然叫神经网络,必然和人的大脑神经元有一定的关系,单个感知机的算法机制其实就是在模拟大脑神经元的运行机制。”

屏幕上呈现一张大脑神经元的结构图。

“这是一个神经元,大家都知道它的结构,这是树突,这是轴突,其它神经元发过来的信号通过树突进入神经元,再通过轴突发射出去,这就是一个神经元的运行机制。”

“现在我们把神经元的树突变成输入值,把轴突变成一个输出值,于是这个神经元就变成了这样的一张图。把它转化为一个数学公式就更简单了,[x1+x2+x3=y],就是这个公式。”

“没错,就这么简单。最复杂的事物往往是有最简单的事物创造的,简单的0和1就塑造了庞大的计算机世界,四种核苷酸就空置了纷繁复杂的生命现象,一个简单的神经元反射就塑造了我们的大脑。”

陈宇停顿了一会儿,再度环视众人:“问题的关键不是基本结构有多简单,而是我们如何使用这个基本结构来构建庞大的世界,神经元之所以神奇是因为它有一个激活机制,即所谓的阈值。”

“神经元的每一个树突不断的接受输入信号,但并不是每一个输入信号都能让轴突输出信号,每一个树突在输入时所占的权重也不一样。”

“比如你追求一个妹子,你孜孜不倦地采取各种行动,今天送了她一束花,明天请她吃大餐,但你发现这些行动都打动不了她。直到有一天伱陪她逛了一天街,她忽然间就被打动了,答应做你女朋友,这说明什么?”

“说明并不是所有的输入权重都是一样的,在妹子那里可能逛街的权重最大,其次是效果的积累并非是一个线性渐进的过程,而是量变引起质变。”

“所有的输入在某一个点之前完全没效果,可一旦达到某个值就突然被激发了,所以,模仿神经元的这种激活特性,那么对刚才的公式做一下改造。”

“每个输入需要一定的权重,在前面加一个调节权重的系数[w],后面加一个常数方便更好地调整阈值,于是这个函数就变成了这个样子。”

方鸿也看向了会议大屏幕,是一个新的数学公式。

【w1x1+w2x2+w3x3+b=y】

陈宇看着屏幕里的公式说:“为了实现激活的过程,对输出值再作进一步的处理,增加一个激活函数,比如当x>1时,输出1;当x<1时,输出0,于是就成了这个样子。”

“不过这个函数看起来不够圆润,不是处处可导,因此不好处理,换成sigmoid函数,这样一个简单的函数就可以处理分类问题了。”

“单个的感知机,其实就是画了一条线,把两种不同的东西分开,单个感知机可以解决线性问题,但是对于线性不可分的问题却无能为力了,那意味着连最简单的异或问题都无法处理。”

异或问题对于在场的所有人包括方鸿都明白,这是计算机的基本运算之一。

这时,陈宇自我反问道:“异或问题处理不了,那岂不是判死刑的节奏?”

陈宇旋即自答:“很简单,直接用核函数升维。感知机之所以能变成现在的深度学习,就是因为它从一层变成了多层,深度学习的深度就是指感知机的层数很多,我们通常把隐藏层超过三层的神经网络就叫深度神经网络,感知机是如何通过加层搞定异或问题的?”

陈宇回头看向屏幕调取下一张幻灯图并说:“计算机有四大基本运算逻辑,与、或、非、异或,这个不用多讲了。如果我们把异或放在一个坐标系来表示就是这样的。”

“原点位置x是0,y是0,于是取0;x=1时,y=0,两者不同取1,通力,这儿也是1,而这个位置x、y都等于1,所以取0,在这张图上如果我们需要吧0和1分开,一条直线是做不到的。”

“怎么办?这就要看异或运算的本质了,数学上来说,异或运算其实一种复合运算,它其实可以通过其它的运算来得到,证明过程太复杂这里就不展开了。”

“如果我们能用感知机先完成括号里的运算,然后再把得出的结果输入到另一个感知机里边进行外面的这层运算,就可以完成疑惑运算了,然后异或问题就这么神奇的解决了,解决问题的同时顺带还解决了线性不可分的问题。”

“这说明什么?说明不管多么复杂的数据,通过加层的方式都可以拟合出合适的曲线将他们分开,而加层就是函数的嵌套,理论上来讲不管多么复杂的问题,我们都可以通过简单的线性函数组合出来,因此,理论上讲,多层的感知机能够成为通用的方法,可以跨领域地解决各类机器学习问题。”

……

UU阅书推荐阅读:全球觉醒:偷听SSS级校花心声邻家妹子爱上我步步为局手术直播间非黑即白?不,我是商业巨擘!大妆大清佳人军痞王爷,超猛的!结婚抓奸笑我傻,跪求原谅你是谁花都奇兵师妹老想撩我怎么办游戏缔造者隐姓埋名二十年,崛起先杀白月光综影:一个穿越者的日常贵妻谋后我只是个病人,别叫我天灾捡回家的班花太黏人,我遭老罪了重生80,断绝关系后我垄断了南方市场透视仙王在都市空间医妃:暴君蛇王极致宠极速治愈:双修镇压道基因武道全能少女UP主我表白的人全让病娇妹妹送走了替身又如何,玄学大佬拿捏女财阀人在家中坐,萝莉天上来重生后,我只想混娱乐圈重生八零俏医媳工业大摸底:摸出来个南天门计划妻子背叛:摇身一变成太子做媒这一块,我谁都不服做卡牌,我可是你祖宗!桃运修真者快穿女配逆袭:男神请上钩重启平行人生灵气复苏:从文明书院开始漫漫修真路,一人独登仙陌上花开为君归轮回剑典盛世良后道士不想下山思归何归大唐盛世游龙前男友爆红后我被迫官宣了杨辰秦惜深山林场:重返83打猎发家妖女满堂?明明是仙子忠诚!破事精英之怕麻烦的副经理炮灰女配的逆袭人生在民族资产的路上
UU阅书搜藏榜:小楼大厦大国中医潇洒离婚后,她藏起孕肚成首富!予你熠熠星光小祖宗她是顶流大佬的心尖宠平淡的水乡生活绑定慈母系统后,我摆烂了凰妃逆天下玄学大佬被乖兮兮的奶狗缠疯了林域守从长征开始:十军团的绝境血路接单相亲,美女总裁赖上我直播打假,开局800页保险护体我和我姐一起穿越了魔族少年闯人间四合院:从逃荒开始逆天十八线艺人搞副业,天天跑警局穿书:我被疯批反派夜夜盯到腿软小市场住手!这不是游戏世界!才女清照权斗觉醒时代:我的队友全是觉醒女神神豪花钱系统!医品嫡妃:娇宠偏执摄政王重生之寒门吝啬媳八零后少林方丈史上最强斩妖师道吟重生黑客女王:冷少追妻忙第99次心动娘亲有点拽我家有只九尾狐腹黑竹马:小青梅,吃不够!被团宠成顶流后,她掉马了最强老公:独宠软萌小甜妻圣灵魔法师绝品医妃:误惹腹黑王爷顶流宠妃倾天下总裁老公惹不得我是修士,你们怎么跟我玩修真到异世求求你出道吧穿越后我靠混吃等死苟成了终极大佬慢穿之璀璨人生蚀骨婚情:前夫,请止步人在终极,开局时空之子美人犹记总裁三观不太正五行天
UU阅书最新小说:出狱断亲你提的,我成医圣你跪什么?怎么从be作者手中找出唯一he成为漫画人气Top先从BE开始大梦仙医我凭本事鉴宝,你说我透视?鹰酱刚出六代机,你八代机服役升空了?穿书反派漏心声,女主带我杀疯了被断双腿后重生,携手学姐返巅峰!全民转职:我,唯一神级职业逆流92:开局甩校花,打造万亿帝国陈宇的1983重生之旅从副县长到封疆大吏世界就是我星河间联盟与基石传奇天濯黑玫官场狂飙,从和女书记搭班子开始高武:刚满十八,我激活了老年逆袭系统?我一圈钱主播,真不会算命啊!跪在妻女墓前忏悔,我重生了堕落后,高冷校花不语只是一味掏钱加钟重生之天道代码村支部书记龙刃虫二大师,从港岛影视娱乐开始国运游戏我是机器降神被甩觉醒系统,我成亿万神豪我十岁,辈分祖师爷,全村来迎接千禧逆袭:从网吧老板到科技巨头龙族:屠龙?卡塞尔懂个屁!绝美老婆有五魂,我直呼受不鸟!高考前,废柴醒来成为道家天师离婚后,我靠影视黑科技系统变强跟我打?我可是氪命玩家群聊通两界,我天师身份瞒不住了重生73:怒怼吸血亲戚,坐拥空间吃香喝辣离婚那天摊牌了:我是上市公司老总!直播:我靠反向带娃火遍全网!高武:一元秒杀,超脱成神重生1978,为国铸剑我,医武双绝,出狱秒杀一切!带着异能穿越:杨齐的花花世界九个绝色师姐,风情万种重返81:赶走白眼狼后我七天成万元户重返八零,奉子成婚迎娶女大学生辞职躺平后,我变超有钱了高冷校花救赎我?抱歉,我已成武神官场之巅峰权力长公主被火葬场?先撕渣男白月光重生:开局校花签下卖身契大国科技,从1983开始