UU阅书 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

太阳计划的推进陷入了瓶颈,能量收集与转化效率远不及预期,愁云笼罩着整个科研团队。腾双眼布满血丝,正和团队成员激烈讨论,这时,英匆匆赶来。

腾抬起头,眼中满是疲惫与焦急:“英,你可来了。现在能量收集板的转化效率始终卡在30%,离我们设定的50%目标差太远。”

英看着满桌的资料和数据,神色凝重:“我一路上仔细想了,从生态科学角度,植物光合作用能高效利用光能,我们或许能从其原理找突破。你们目前尝试了哪些方向?”

团队成员马克推了推眼镜,说道:“我们已经优化了收集板的材料结构,尝试了十几种新型复合材料,可效果都不理想。而且,在能量转化的电路设计上,也反复调整,还是不行。”

英沉思片刻,问道:“那在模拟光合作用方面,有没有考虑过模拟其光反应阶段的电子传递过程?通过构建类似的高效电子传递链,也许能提升能量转化。”

腾眼睛一亮:“这个思路很新颖。但光合作用中的电子传递依赖于复杂的生物分子结构,在我们的设备上怎么模拟实现呢?”

英走到白板前,拿起笔边画边说:“我们可以用纳米材料构建类似的结构。比如,利用碳纳米管来模拟生物分子的传导路径,它的导电性和稳定性都很高。”

团队成员莉莉面露疑惑:“英博士,碳纳米管虽然性能好,但在大规模生产和整合到现有设备上,可能会面临成本和技术难题。”

英点点头:“这确实是个问题。不过我们可以先在实验室小规模试验,如果可行,再想办法优化生产工艺降低成本。另外,在能量收集阶段,我们是否可以改变收集板的表面微观结构?”

腾皱眉思考:“改变微观结构?你的意思是像植物叶子表面那样,有特殊的纹理来更好地捕获光能?”

“对!”英肯定地说,“植物叶子表面的微纳结构能减少光反射,增加光吸收。我们可以通过微纳加工技术,在收集板表面制造类似结构。”

团队成员汤姆挠挠头:“可不同波段的光,对微观结构的要求可能不同,我们该怎么平衡?”

英回答:“这就需要精确的光学模拟和实验测试。先确定主要吸收的光波段,针对性设计结构,再逐步优化。腾,你们之前对不同波段光的能量收集效率有详细数据吗?”

腾立刻翻找资料:“有!在可见光的蓝光和红光波段,收集效率相对较高,但近红外波段一直很低。”

英看着数据说:“那我们重点从近红外波段入手。近红外光能量丰富,提高它的收集效率对整体提升很关键。我们可以尝试在收集板表面添加对近红外光敏感的材料。”

马克疑惑道:“添加敏感材料不难,但怎么保证它与其他部分协同工作,不影响整体性能?”

英思索片刻:“可以通过在材料表面修饰特殊的官能团,使其与收集板的基础材料形成化学键合,增强相互作用。这样既能保证稳定性,又能协同工作。”

腾边记录边说:“这个方法值得一试。还有,在能量转化后的存储环节,我们也遇到了一些损耗问题。”

英问道:“是存储设备的漏电,还是转化过程中的能量散失?”

团队成员大卫回答:“两者都有。目前的电池储能效率不高,而且在充电过程中,有部分能量以热能形式散失了。”

英皱着眉头思考:“对于电池漏电问题,可以尝试给电池添加一层特殊的绝缘涂层,减少电子泄漏。至于能量散失为热能的问题,我们能不能在转化电路中加入高效的散热和能量回收装置?”

腾疑惑道:“能量回收装置?怎么实现?”

英解释:“当能量以热能形式散失时,我们可以利用热电材料,将热能重新转化为电能。虽然不能百分百回收,但能减少部分损耗。”

莉莉提出疑问:“热电材料的转化效率有限,会不会得不偿失?”

英说:“我们可以通过优化热电材料的成分和结构,提高转化效率。而且,即使只能回收一小部分能量,长期积累下来也很可观。”

汤姆又问:“那在设备的整体封装方面,要不要考虑特殊设计来减少能量损耗?”

英点头:“非常有必要。可以采用多层复合封装材料,既能保证设备的密封性,又能起到隔热、防辐射等作用,减少外界因素对能量收集和转化的干扰。”

腾看着团队成员,充满信心地说:“大家听到了吧,英博士给我们提供了这么多新思路。接下来,我们分组行动,一部分人研究模拟光合作用的电子传递,一部分人负责微纳结构设计和近红外光敏感材料添加,还有一组研究电池绝缘涂层和能量回收装置,以及设备封装。大家有没有信心?”

众人齐声喊道:“有!”

在接下来的日子里,团队成员日夜奋战。一周后,负责模拟光合作用电子传递的小组传来消息。

马克兴奋地冲进会议室:“成功了!利用碳纳米管构建的模拟电子传递链,在实验室测试中,将能量转化效率提高了5个百分点!”

腾激动地拍了拍马克的肩膀:“干得好!其他小组呢?”

负责微纳结构设计的莉莉笑着说:“我们在收集板表面制造出了类似植物叶子的微纳结构,近红外光的收集效率提高了8个百分点!”

负责能量回收和封装的大卫也笑着汇报:“电池绝缘涂层有效减少了漏电,能量回收装置也成功回收了约10%的热能,封装设计能有效降低外界干扰!”

腾看着大家,眼眶有些湿润:“太棒了,大家的努力没有白费。英,这次多亏了你。”

英笑着说:“是大家共同的功劳。我们继续努力,相信很快就能达到目标效率!”

在众人的努力下,太阳计划终于突破了技术瓶颈……

UU阅书推荐阅读:在日本当老师的日子末日重来没想到剧情也变了进击吧,末日铁甲末世,我靠双系统封神开局十只骷髅,我杀穿末世原神,永恒的守护魔方世界:末世困兽诸天大道图全球末世:开局觉醒吞魂天赋在末世里冷血亿点没问题吧保持缄默星际历险记从梦见末世到打造幸存者基地文字游戏入侵现实终极吞噬进化末世大咖末路:道尽途穷全球提升计划新世界运输公司末日我在尸群当中睡大觉末世财阀:开局被重生女主倒贴末世重生之换个老公星空下的残响末日苟到尸帝星海缥缈记末世天灾:先从暴雨开始重生末世之我哥是反派开局就送狗熊岭?末世,不带怕的高温末世,三宫六院不算什么末世系统:心灵终结文明模拟:迷失舰队当丧尸开上机甲变成丧尸了,空间有何用?末世:从仙帝开始末世:开局一把喷子打爆丧尸造星无敌从火影开始末世开局:傻了,我是超级大反派星海骑士:无名小卒开局我成了反派?星际未来之梦末世降临,开局获得千本樱提瓦特的崩坏3系统神级快穿:病娇宿主,求轻宠穿书末世圣母,我带着丧尸杀疯了火影战力盘点:第一居然是他?废土黎明之最终战役末世凶兽:我也想做姐姐的狗末日重生:有仇不隔夜,当场报末世囤货,手握千万资金开局
UU阅书搜藏榜:微型世界:开局灭了一国糟了!1999年的事情瞒不住了快穿之拯救小娇妻穿越原神后魈自愿和我回家我又又恋爱了末日重生:我选择拯救世界全球求生:开局一座避难所全球降临之雪国求生天瞳术美漫也有妖气我编的百科词条成真了源力大时代最终之自我救赎末世:想要变强?唯有囤积女神!当学霸开了科技移动城佣兵协议诸天:开局一座明朝时空门万界第一纨绔星痕末世重生后要种田修仙登顶银河人生赢家金古武侠赋废土世界:从拾荒机器人开始单独降临:七十亿副本求生九叔之我竟然是秋生修神之至尊之道快穿:宿主她危险又撩人末世丧尸女王:男神,来撩!咒术法师逆转快穿:男主求攻略韩娱之大梦想末日求生:苟住别浪狗腿子切开是黑的捡个星际元帅当老公穿越诸天西幻网游之贼倾天下哇酷阿玛的搞笑小故事独独不说喜欢你某超赛亚人的世界之旅启灾厄末世重生:我成为了末世最强领主热血格斗家诡眼迷踪平凡末世路灵魂快穿:病娇男主你有毒我的命运改变器末世究极基地男主怎么老崩坏
UU阅书最新小说:末日游戏崛起人在月球助华夏,发现女娲在逃难重生,带着妹妹闯末世曙光消逝:黑暗纪元的科技沦陷战火燃星宇系统降临!助我战虫族末世:她靠作死带飞全场996社畜末日逃生日记星夜逆途都末日了,我打个小广告怎么了?外星来客与地球火锅平行时光穿末世文中,成为男主心尖宠我的沙漠星,每天都在疯狂爆兵重回天灾,抱着空间当囤囤鼠星辰的启程星陨纪元:地球重启计划星际都市追梦谁说病娇不好啊,这病娇太棒了末日求生:我随身带着电饭锅极寒末日,我无限空间万人迷向导:S级哨兵们的菟丝花废土曙光:林羽的救赎征程让你预测天灾,你全抓了?末世:从触碰妹妹的脚开始灵能末世:废墟上的超维觉醒机械洪潮:末日觉醒求个财而已,你竟搬空末世金库!末世重生之带空间在末世躺赢嘘!她在囤货等末世重回天灾游戏降临前重生回到末世一年前,我只想种田末世:空间加复制,我不狂谁狂空间异能:末世重生后她又行了西幻:我成了神秘生物末日:丧尸狂潮星辰大道丧尸吃人,我吃丧尸幽影末世:量子迷踪异星末世:时空乱流末世裁决:光影之战末日裂谷:异次元危机吞噬:外星捕食者与青梅竹马的末世路末世:最后一个男人的我多子多福什么?有他在蓝星文明就是无敌?星辰卫士海平面升高七十米,我赚麻了末日游戏全球降临明日之始